
pyvaru Documentation
Release 0.3.0

Davide Zanotti

Oct 30, 2017

Contents

1 What is pyvaru? 1

2 Installation 3

3 Usage 5

4 Full API Documentation 7

5 Credits 9

6 Indices and tables 11

i

ii

CHAPTER 1

What is pyvaru?

Pyvaru is a simple, flexible and unobtrusive data validation library for Python 3 (3.4+), based on the concept of
validation rules.

From the software design point of view, a rule is a class implementing the strategy pattern, by encapsulating the
validation logic in an interface method called apply().

The library already offers a series of common validation rules like:

• TypeRule (it checks that the target value is an instance of the expected type)

• FullStringRule (it checks the the target value is a string with content)

• ChoiceRule (it checks that the target value is contained in a list of available options)

• MinValueRule (it checks that the target value is >= x) *

• MaxValueRule (it checks that the target value is <= x) *

• MinLengthRule (it checks that the target value length is >= x) *

• MaxLengthRule (it checks that the target value length is <= x) *

• RangeRule (it checks that the target value is contained in a given range)

• IntervalRule (it checks that the target value is contained in a given interval)

• PatternRule (it checks that the target value matches a given regular expression)

• PastDateRule (it checks that the target value is a date in the past)

• FutureDateRule (it checks that the target value is a date in the future)

• UniqueItemsRule (it checks that the target iterable does not contain duplicated items)

* where “x” is a provided reference value

The developer is then free to create his custom rules by extending the abstract ValidationRule and implementing
the logic in the apply() method. For example:

1

pyvaru Documentation, Release 0.3.0

class ContainsHelloRule(ValidationRule):
def apply(self) -> bool:

return 'hello' in self.apply_to

These rules are then executed by a Validator, which basically executes them in the provided order and eventually
returns a ValidationResult containing the validation response.

2 Chapter 1. What is pyvaru?

CHAPTER 2

Installation

pip install pyvaru

3

pyvaru Documentation, Release 0.3.0

4 Chapter 2. Installation

CHAPTER 3

Usage

Given an existing model to validate, like the one below (but it could be a simple dictionary or any data structure since
pyvaru does not make any assumption on the data format):

class User:
def __init__(self, first_name: str, last_name: str, date_of_birth: datetime, sex:

→˓str):
self.first_name = first_name
self.last_name = last_name
self.date_of_birth = date_of_birth
self.sex = sex

We have to define a validator, by implementing the get_rules() method and for each field we want to validate we
have to provide one or more proper rule(s).

from pyvaru import Validator
from pyvaru.rules import TypeRule, FullStringRule, ChoiceRule, PastDateRule

class UserValidator(Validator):
def get_rules(self) -> list:

user = self.data # type: User
return [

TypeRule(apply_to=user,
label='User',
valid_type=User,
error_message='User must be an instance of user model.',
stop_if_invalid=True),

FullStringRule(lambda: user.first_name, 'First name'),
FullStringRule(lambda: user.last_name, 'Last name'),
ChoiceRule(lambda: user.sex, 'Sex', choices=('M', 'F')),
PastDateRule(lambda: user.date_of_birth, 'Date of birth')

]

It’s also possible to create groups of rules by using RuleGroup and avoid code duplication if multiple rules should
be applied to the same field. So this code:

5

pyvaru Documentation, Release 0.3.0

def get_rules(self) -> list:
return [

TypeRule(lambda: self.data.countries, 'Countries', valid_type=list),
MinLengthRule(lambda: self.data.countries, 'Countries', min_length=1),
UniqueItemsRule(lambda: self.data.countries, 'Countries')

]

can be replaced by:

def get_rules(self) -> list:
return [

RuleGroup(lambda: self.data.countries,
'Countries',
rules=[(TypeRule, {'valid_type': list}),

(MinLengthRule, {'min_length': 1}),
UniqueItemsRule])

]

Finally we have two choices regarding how to use our custom validator:

1. As a context processor:

with UserValidator(user):
do whatever you want with your valid model

In this case the code inside with will be executed only if the validation succeed, otherwise a
ValidationException (containing a validation_result property with the appropriate report) is raised.

2. By invoking the validate() method (which returns a ValidationResult)

validation = UserValidator(user).validate()
if validation.is_successful():

do whatever you want with your valid model
else:

you can take a proper action and access validation.errors
in order to provide a useful message to the application user,
write logs or whatever

Assuming we have a instance of an User configured as the one below:

user = User(first_name=' ',
last_name=None,
date_of_birth=datetime(2020, 1, 1),
sex='unknown')

By running a validation with the previous defined rules we will obtain a ValidationResult with the following
errors:

{
'First name': ['String is empty.'],
'Last name': ['Not a string.'],
'Sex': ['Value not found in available choices.'],
'Date of birth': ['Not a past date.']

}

6 Chapter 3. Usage

CHAPTER 4

Full API Documentation

Go to: http://pyvaru.readthedocs.io/en/latest/contents.html

7

http://pyvaru.readthedocs.io/en/latest/contents.html

pyvaru Documentation, Release 0.3.0

8 Chapter 4. Full API Documentation

CHAPTER 5

Credits

Pyvaru is developed and maintained by Davide Zanotti.

Blog: http://www.daveoncode.com

Twitter: https://twitter.com/daveoncode

9

http://www.daveoncode.com
https://twitter.com/daveoncode

pyvaru Documentation, Release 0.3.0

10 Chapter 5. Credits

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

11

	What is pyvaru?
	Installation
	Usage
	Full API Documentation
	Credits
	Indices and tables

